
Rhino Arm

Jeff Caley

11-11-2010

ECE - 578

Introduction:

The RhinoArm project consists of a XR-3 Rhino Robotic Arm made by Rhino Robotics, a Mark III Controller and a robotic arm simulator build in Unity using A* search to solve the inverse kinematic problem. The user is able to give the software program a XYZ coordinate and have a simulated model of the XR-3 arm move to that position in space. The Physical XR-3 arm will also move with it.

The System:

To make the RhinoArm operate; an XR-3, a Mark III Controller and a Computer are needed. The XR-3 connects to the Mark III through 10 pin connector ribbon cables. These cables connect directly to each servo and control the movement of the robotic arm. The controller gets its commands from a computer via the s[image: image1.png]|

Teach Pendant

Robot

erial port. The serial port is RS-232 and is of the 25 pin variety. The Teach Pendant is an alternative way to communicate move the robotic arm, with different buttons moving each servo independently.

XR-3:

The XR-3 is a five axis robotic arm. Each axis moves independently and each can be controlled simultaneously. There are six servo motors, 5 to control each axis and a 6th to open and close the gripper, with incremental optical feedback to allow precise movement. Each drive servo is connected to the controller by a 10 conductor ribbon cable which supplies power and carries position data from the encoder. This position data is fed into the Mark III controller and is used to position each arm to the requested location. The robot can lift a 1kg object and has a reach of 24 inches from its base. Each of the six motors is associated with a specific letter of the alphabet for naming; A-F. The ranges of motion for each motor are as follows:

Motor "F" Body Rotation - 350 degrees

Motor "E" Shoulder Rotation - 210 degrees

Motor "D" Elbow Rotation - 265 degrees

Motor "C" Wrist Rotation - 310 degrees

Motor "B" Gripper Rotation - +/- 7 revolutions

Motor “A” Gripping Action - N/A

Figure 1 shows the location of each motor what what joint they operate.

Mark III Controller:

The Mark III Controller is the brains of the XR-3 robot. It comes with a built in microprocessor, operating system and electronics for control. This Controller allows for a direct interface to the 8 servo motor outputs, the attach teach pendant (not used in this project) and the use of the standard RS-232 serial port communication.

Talking via Serial Communication:

The Mark III Controller uses a 25 pin RS-232 standard serial port to make communication to a computer. It doesn’t use a handshake and requires a direct pin connection setup seen in Figure 3. Most computers these days don’t have a 9 pin serial port and almost all won’t have a 25 pin serial port, so a USB to serial adapter can be used. This project uses a TRENDnet TU-S9 USB to Serial adapter with drives available at http://www.trendnet.com/asp/download_manager/list_subcategory.asp?SUBTYPE_ID=571. A[image: image2.png]

[image: image3.png]MARK 111

Pn2 — — Pin2
Pin3 —— Pin3
Pn5 —— Pin7
Pin4 — —Pin4
Pin6 ~Pin5
Pin 7 Pin 6
Pin 8 — Pin 8
L Pin 20

 9-25 pin adapter was used to increase the pin number to 25 and then a 25 pin null modem cable to get the appropriate pin connections needed to communicate to the mark III. The settings for the serial communication are a 9600 baud rate, 7 data bits, 2 stop bits and even parity. It uses ASCII code and has been programmed to operate 14 basic commands. The commands are as followed:

<return> : Carriage return (initiate a move)

? : return distance remaining

A-H : set motor movement value

I : Inquiry command (read limit switched C-H)

J : Inquiry command (read limit switched A-B and inputs)

K : Inquiry command (read inputs)

L : Turn Aux #1 port ON

M : Turn Aux #1 port OFF

N : Turn Aux #2 port ON

O : Turn Aux #2 port OFF

P : Set output bits high

Q : Controller reset

R : Set output bits low

X : Stop motor command

An example of how this works is, if you want to have the E motor move to angle 80 degrees, simply send the ASCII code “E80” through the serial port. This will then move the corresponding E motor to 80 degrees. If you sent “E?” it would then return “80” back through the serial port for the computer to read.

Inverse Kinematics: The inverse kinematics problem states "Given the desired position of the robot's hand, what must[image: image4.png]Mode Switch Aux Port

Teach Reversing
Pendent Part Switch
Aux Ports Reset

Outputs.

Inputs:
Encoded Motor Ports Motor Power

Host Computer RS-232C Port Switeh
Power Indicator

[image: image5.png]Siun

Openlist = B,C,D,E,FGH,I
(Iosedllsi A

W I|\Wed

 be the angles at all of the robot's joints?" This also applies when you want to move the robotic hand from one position to another. Given an XYZ coordinate, how much does each joint have to move to move the tip of the robotic hand to the given location. Not only that, but what route is the shortest to the goal location? Often with robotic arms that have multiple axis of rotation, there is more then one solution to the inverse kinematics problem; meaning there is more then one set of angles that gives the robotic arm to a desired position. But looking for the most efficient solution can be important and challenging. This all boils down to a large search problem.

A* Search:

To solve the inverse kinematics problem, A* search was used. The initial position of the 4 joints; C,D,E,F, are stored in a node on a open list. The first element of the open list is then expanded to show all next state positions of the robotic arm. because there are 4 joints, there are 8 possible next states that the robotic arm could exist in. Each of the 8 children states have only one joint incremented or decremented by one degree. These new 8 states all are added to the open list. The parent node of these are added to the closed list so this state is never re-added to the open list. The cost to move the robotic arm to each of these states must also be factored in. By moving joint C one degree, the end of the robotic arm moves a certain euclidian distance, this distance is defined as the cost. The distance to the goal is another important measure. This is used to determine how much progress each of the moves makes towards reaching the goal. Finally, the total cost to move to a node must be figured, this is the cost of all previous moves to reach the current node. With this information available for each node on the open list, we can sort the open list by the “total distance moved“ + “Distance to Goal” = “Total Estimated Cost”. The node with the smallest sum is currently our best path to our goal. This node is then taken and expanded into its next 8 possible states. This is repeated over and over again until the distance to goal is equal to zero. Then the goal as been reached. By walking back up the chain of the nodes that have been expanded, you can see the route the A* search has taken. The final node will have a specific value for joints C,D,E and F that will represent the arm’s finally position that will be touching the goal.
[image: image6.png]Openlist = A
(losedList = Null

[image: image7.png]

The heuristic estimate used in this example was euclidian distance to the goal. This was chosen because it was a simple way to make sure the heuristic was admissible. There may be better heuristics and hopefully some more will be able to tried and compared to learn what makes a good heuristic.

Unity Simulation:

Unity is a game development tool that can be used to create fully immersive games. For this application it was used to create a 3-D interface and simulation of the XR-3 robotic arm. The Rhino arm was drawn in CAD software and then imported into Unity for scripting. Unity 3.1 was used for this simulation and is available for download at http://unity3d.com/unity/download/. Unity breaks up the programming into Scene and Camera. The scene shows your 3-D objects and executes the attached scripts, the camera displays these objects from a specified angle with a specific lighting. The robotic arm simulation consists of five CAD drawing that are placed in space in the scene. A robot controller script specifies where to place each of these drawings and at what angle they should appear. A sixth item is in the scene, this being the goal state. It appears as a small red ball. An A* search script then interacts with the scene. Between each frame, the A* search script sorts its open list, grabs the node with the smallest f(x) , adds it to the closed list and then opens the node. Eight new positions are found and added to the open list. The list is sorted and the node with the smallest f(x) sends data to the robot controller script to tell it how to position each of the 5 CAD drawings representing the robotic arm. This results in the simulation showing the movement of the robotic arm for each step as it moves through the A* search algorithm. Another version of the program only drawn a new scene when the goal state has been reached. This version only shows the initial state and then the final state, it doesn’t show the path it takes.

Still to be done:

Communication to the robotic Arm through a serial port using C#:

To get the correct Pin connection, a 9-25 pin adapter and a null modem cable had to be ordered. Just received these in the mail and should be able to test if this works soon.

Try different heuristics for A* search:

Currently the distance heuristic works very well, but I would like to try some others. Coming up with them seems fairly difficult, but trying one that favors moving certain joints before others could be possible.

Integrating controlling the robotic Arm and the Unity Simulation:

Currently the software that is trying to move the robotic arm and the simulation software are separate. Combining these so as you simulate the movement of the robotic arm, the XR-3 moves along with it would be ideal. This should be pretty easy once control of the XR-3 is possible.

Future work to be done (maybe next term)

· Add Stereo camera
· image processing to identify items
· Locate items in XYZ plan and have arm pick them up: (this would mean more logic would need to be added to the A* search to allow for the gripper to come in at an appropriate angle to pick items up)
· Avoid objects and recalculate A* search with now seen objects
· Try other Search algorithms and compare to A*
Sources

· http://www.rhinorobotics.com/
· http://ifac-mmm-tc.postech.ac.kr/artmind/library/download.php?db=class_eecs565&no=1&s_id=0 (A great manual on how to work the XR-3 and the Mark III)
· http://unity3d.com/
· The Rhino Robotic Arm uses manual (Found in the lab)
Figure 2: Mark III Controller

The System

Figure 1: Motor Placements

g(x) = Total Distance Moved

h(x) = Euclidian Distance to Goal

f(x) = Total Estimated Cost

f(x) = g(x) + h(x)

Figure 3: RS-232 9-25 pin diagram

